Image Super-Resolution Using Aggregated Residual Transformation Networks With Spatial Attention
نویسندگان
چکیده
منابع مشابه
Residual Dense Network for Image Super-Resolution
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (...
متن کاملSuper-Resolution Community Detection for Layer-Aggregated Multilayer Networks
Applied network science often involves preprocessing network data before applying a network-analysis method, and there is typically a theoretical disconnect between these steps. For example, it is common to aggregate time-varying network data into windows prior to analysis, and the trade-offs of this preprocessing are not well understood. Focusing on the problem of detecting small communities i...
متن کاملMultiframe Image Super - Resolution Using
Multiframe super-resolution algorithms can be used to reconstruct a high-quality high-resolution image from several warped, blurred, undersampled, and possibly noisy images. A widely used means of implementing such algorithms is by optimization-based model inversion. In the past, steepest-descent methods have been applied. While easy to implement, these methods are known for their poor converge...
متن کاملMultiframe image super-resolution adapted with local spatial information.
Super-resolution image reconstruction, which has been a hot research topic in recent years, is a process to reconstruct high-resolution images from shifted, low-resolution, degraded observations. Among the available reconstruction frameworks, the maximum a posteriori (MAP) model is widely used. However, existing methods usually employ a fixed prior item and regularization parameter for the enti...
متن کاملMulti-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However, due to the requirements for long acquisition and breath-hold, the clinical routine is still dominated by multi-slice 2D imaging, which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution, we propose a novel image super-resolution (SR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2927238